
 - 1 -

D:\data\projekte\g2\integration_aspects.ipw 30.09.2005 / AS

Aspects of the integration of two or more web-
applications

When integrating a web-application into another, there are several aspects. This
document describes these aspects, possible obstacles and solutions thereof. The
findings are based on the process of making Gallery 2, a PHP-based photo album
management software, ready for interoperability with other web-applications.

� Principles

� Master-Slave relationship and Communication

� User and Group management

� Session management

� Authentication

� URL generation

� Visual Integration

� (Permission Management)

� Controlling Access

� Search and other API interfaces

� Namespace Collisions

� Environment

Principles

� No forking: All applications can use their won upgrade path. No (developer)
resources are wasted with forks. Glue code and APIs are used to glue the
applications together

� Seamless integration: Make the resulting solution look and act like a single
application

� Data integrity: Keep the application in sync’, at any time. No periodic tasks
(cron, scheduler, ..) should be necessary

� Make the life of integration authors as simple as possible: The more code
has to be written for a specific integration, the longer it takes to write it and
the more code must be maintained.

 - 2 -

30.09.2005 / AS D:\data\projekte\g2\integration_aspects.ipw

Master-Slave Relationship and Communication

� Primary application is the master

� “Embedded” application is the slave

� Alternatives: duplex communication

� More than two applications: multiple master-slave relationships

� Master-Slave relationship throughout all aspects

� Communication between the two applications: PHP and on the same web-
server. Or XMLRPC as a more powerful alternative

User and Group Management

� Tight vs. loose integration: tight = both applications share the same da-
tabase user table, loose = both applications use their own user manage-
ment, but they are loosely coupled and never out-of-sync’. Standardizing
user management to for tight integrations seems to be impossible. We ex-
plored both directions and decided us for a loose integration.

� Event-based synchronization

� On-the-fly user generation as low-tech fallback solution

� Periodic synchronization as low-tech fallback solution (update, delete us-
ers)

� Initial user and group synchronization (import / export)

� Groups not that important, possible obstacles

� Single new user registration solution (event-based synchronization or low-
tech fallback)

� Unhandled: Adding registration user data fields for the other application

Session Management

� A standardized session interface / API would be good.

� For the lack of such a standardization and since not all applications allow
adding session data etc., parallel session management was chosen (mas-
ter-slave), which actually means that both applications use their own ses-
sion management

� Fun with cookies (see document about cookie management in G2)

� Session Timeouts

 - 3 -

D:\data\projekte\g2\integration_aspects.ipw 30.09.2005 / AS

Authentication

� Master does the authentication, slave trusts the master

� No-overhead solution for loading the corresponding user in slave (no addi-
tional db queries, … necessary)

� Clear-text / Hashed passwords only important when accessing both appli-
cations directly

� Single-Sign-On (SSO) solution

URL Generation

� URLs of the embedded application

� What parameters are required

� Short URLs / mod_rewrite / …

Visual Integration

� Central template system is unrealistic

� Slave returns generated HTML, CSS, JS, title, <head> content separately

� Master must have the possibility to add external CSS / JS <head> content
to the page output, also a method to set the page title

� Master must have the option to allow the slave to output directly to the
browser for special cases, e.g. DownloadItem in Gallery 2

� Removing specific menu items, e.g. registration / login links, …

� Alternative: Standardized templating or widget-based output

Permission Management

� Not integrated. Permission systems are too different and a central GUI to
administer all permissions seems to be a too small benefit. Research
needed.

� Both applications manage permissions separately, but they are still linked
since both applications assign the permissions to the same users / groups.

� The master application can restrict access to the embedded application, the
embedded application manages the detailed privileges

 - 4 -

30.09.2005 / AS D:\data\projekte\g2\integration_aspects.ipw

Controlling Access

� Should both applications still be accessible directly, or is one of them only
allowed to be accessed embedded

� Are there exceptions (G2: GR, DownloadItem, ..)

Exposing Search Functionality and Other API

� Syndicate the search function, API required

Namespace and Code Collisions

� Use prefixes for your class names

� Use prefixes for your db tables / columns

� Use a minimum of global variables and make sure their name is prefixed or
very unique

� Use prefixes in constants

� When using 3rd party libraries like adodb, smarty, … make sure to use the
latest versions and make sure they work when included multiple times.

� Also make sure to use absolute file system paths in all includes. This is
generally a good idea and even more important for interoperability

Environment

� Character Encoding. Either all UTF-8 or the applications need to be flexible
about input (from browser, other application) / output (HTML) character en-
coding

� PHP environment: register_globals, error reporting, PHP versions, …

